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Cartan's geometrical approach to Newtonian mechanics is discussed and gen- 
eralized. The approach is geometrical and use is made of the theory of holonomy 
groups. The concept of a degenerate metric connection is formulated and 
discussed. 

1. I N T R O D U C T I O N  

One of the most provocative aspects of  classical Newtonian mechanics is 
the assumption of absolute space. This carries with it the ability to distinguish 
between 'true' and 'inertial' forces and leads to the idea of preferred 'inertial' 
frames in which 'inertial' forces are absent. Of course Newtonian mechanics 
can be written in a 'descriptively' covariant way by involving, for example, 
a Lagrangian formulation. The latter theory, however, contains the metric 
tensor components, which, though present in the equations of motion, do not 
themselves satisfy field equations. They are abso lu te  variables in the sense 
of Anderson (1967) and Trautman (1965) and are merely a restatement of 
the original Euclidean nature of absolute space. Similar remarks apply to the 
way one writes Maxwell's equations in special relativity in covariant form 
by essentially allowing arbitrary coordinate systems and using some minimal 
coupling device. In each of these examples the mathematical model is a 
manifold carrying a metric and one has achieved a descriptive rather than a 
dynamical geometrization of the theory. 

In general relativity, however, the principle of covariance is satisfied in 
a much stronger way. Einstein's field equations are written in a covariant 
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form without the need to introduce any absolute variables. They contain 
only dynamical variables (i.e., the space-time metric). In this sense general 
relativity can claim to be a fully (i.e., dynamically) rather than a merely 
descriptively geometrized theory. 

The descriptive geometrization of a theory can nevertheless be extremely 
instructive and illuminating and one often finds that certain features of the 
theory which are awkward in an analytical approach fit rather more elegantly 
into a geometrical framework. Cartan's approach to classical Newtonian 
mechanics (Cartan, 1923, 1924; Trautman, 1965; Misner et al., 1973) is an 
example of a descriptive geometrization with a rather instructive geometrical 
content. It will be explored further in this paper with particular reference to 
the holonomy structure and some generalizations will be suggested. Histori- 
cally, of course, Cartan's work is later than Einstein's general relativity and 
alternative geometrizations of classical mechanics had been developed before 
Einstein which were mainly due to the work of Euler, Lagrange, Jacobi, 
Hamilton, and others [a very readable account of this development can be 
found in Lanczos (1949)]. 

Cartan's treatment, however, differs from most of the other treatments 
in that it is based on a connection rather than a metric and links space and 
time together geometrically. Further, Cartan's connection is not a metric 
connection and so the techniques for handling it are a little different from 
those normally encountered in metric theories. 

It should be noted that Cartan's geometrized theory and its relationship 
to Einstein's general relativity has been studied by a number of authors. In 
particular see Ktinzle (1972), Duval and Ktinzle (1977), and Dixon (1975) 
and the references contained in the reviews by Havas (1964) and Duval et 
al. (1985). 

2. NEWTON-CARTAN MECHANICS 

Let M be the manifold R 4 with the standard global coordinate system 
denoted by (x ~ x 1, x 2, x3). Here x ~ is to be regarded as Newtonian absolute 
time and the hypersurfaces of constant x ~ inherit a natural global coordinate 
system and hence a natural three-dimensional manifold structure from this 
coordinate system on M. Such hypersurfaces are referred to as space slices 
and are diffeomorphic to R 3. It is supposed that on M a global type (2, 0) 
tensor h is defined whose components in the original coordinate system x a 
above are constant and given by h ab = diag(0, 1, 1, 1). Latin indices will 
take the values 0, 1, 2, 3 and Greek indices will take the values 1, 2, 3. The 
tensor h has rank 3 at each p e M and so is not a metric for M. The tensor 
h does, however, give rise to a unique tensor/~ on each space slice which is 



N e w t o n - C a r t a n  Mechanics 1095 

a flat Euclidean metric with constant components/~s~ = diag(1, 1, 1) in the 
standard chart. 

It is also assumed that M admits a smooth symmetric connection F 
defined by its components FZc in the coordinates x a which are 

FS0 = - F  s (1) 

All other components are zero and F ~ are three given smooth, real-valued 
functions on M. Now it easily follows that any curve in M of the form x ~ 
= ask + b% x ~ = c (where a s, b s, c E R) is a geodesic of F (with affine 
parameter k) which lies in the space slice x ~ = c. Since a vector X ~ TpM 
is tangent to the space slice through p if and only if X ~ = 0, it now follows 
that any geodesic of M initially tangent to a space slice remains in the space 
slice and hence that each space slice is a totally geodesic submanifold of M. 
Because F is symmetric, it follows that each space slice is then an autoparallel 
submanifold of M (Kobayashi and Nomizu, 1963/1969, Vol. II), that is, each 
X ~ TpM which is tangent to a space slice at p remains tangent to this space 
slice under parallel transport along any curve lying in this space slice. It 
follows that each space slice inherits a natural induced connection from the 
connection F on M. This natural induced connection is symmetric (since F 
is) and is then easily seen to be the Levi-Civita connection associated with 
/z on each space slice. 

Further remarks can be made about the geometry of the connection F 
on M. First, the tensor h defined earlier is easily confirmed to be covariantly 
constant, i.e., hab;c = O, where a semicolon denotes the covariant derivative 
arising from F. Second, the globally defined 1-form t ~ dx ~ [with components 
t~ = (1, O, O, O) in the above coordinate system] and the three globally defined 
vector fields 

0 0 0 
X -  Y =  Z -  

OX 1 OX 2 OX 3 

[with respective components (0, 1, 0, 0), (0, 0, 1, 0), and (0, O, O, 1) in the 
above coordinate system] are also covariantly constant. Third, the connection 
F gives rise to a curvature tensor ~t with components Rabca which in the 
above coordinate system satisfy 

R~0~0 = -R%0~ = - F S ~  (2) 

with all other components zero and where a comma denotes a partial deriva- 
tive. Thus, apart from the special case when the functions F s are each 
independent of the 'space' coordinates x s, the connection F is notflat. Further, 
the equations Xa;b = ya;b = Z% = 0 and the Ricci identity show that 

Rabcd Xb = Rabcd Yb = Rabcd Zb = 0 (3) 
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This implies that / f  ~t is not identically zero, then F is not a metric connection. 
For if F is compatible with some metric, say gab, then the tensor Habca = 
gaeRabcd would, in the usual 6 • 6 notation familiar from general relativity 
theory, admit six independent solutions for F ab of the equation Fabnabcd = 
0 [from (3)] and would thus be zero. This contradicts the assumption that ~t 
is not identically zero. Conversely, if ~ is identically zero, then it follows 
that, since M = R 4 is simply connected, F is a metric connection. Hence it 
has been shown that F is metric i f  and only i f  its associated curvature tensor 
is identically zero. 

Consider an affinely parametrized geodesic xa(h) of M which is not 
tangent to the space slice at its initial point p. The previous remarks then 
show that the geodesic is never tangent to the space slice and (1) shows that 
its equation in the above coordinate system can be written in the form 

- F  ~ - 0  
' dh2 

(4) 

This equation represents the central idea of Cartan's theory, since it shows 
that the absolute time function x ~ is an affine parameter for these geodesics 
of F and that these geodesics can then be regarded as the paths of particles 
moving under the influence of a Newtonian force represented in this coordi- 
nate system by the functions F'L 

If one performs a coordinate transformation x '~ = x ~ x '~ = x ~ + f~(x~ 
then the geodesic equation (4) becomes 

d2x '~ ( ' 0 ) 2 d 2 x ' 0  .. dx - 0  
dk  2 - (F,~ + f ~ )  - ~  , dk2 (5) 

where a dot represents differentiation with respect to x ~ From the physical 
viewpoint, if one regards the original coordinates as inertial [in the usual 
sense that any observer with the world line given by x ~ = c a (c '~ ~ R) is 
an inertial observer], then (5) simply displays the extra inertial (accelerative) 
forces. This equation also shows that if F is flat [and hence F '~ = F~(x ~ 
from (2)], then the force may be 'transformed away' by such a transformation 
i f f  ~ is chosen appropriately. It can thus be seen that the flatness condition 
for F, the condition that F is metric, and the ability to 'transform the force 
away' in the above sense are equivalent conditions. 

A connection F as described above will be referred to as a standard 
Cartan connection f o r  R 4. Usually F ~ is given in the form F ~ = qb~, where 

is a real-valued function on M. This restriction will not, however, be 
imposed in this paper. 
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3. H O L O N O M Y  GROUPS AND CARTAN'S  THEORY 

Let M be a smooth, connected, Hausdorff, paracompact manifold car- 
rying a smooth (linear) connection F. For a fixed k (1 -< k - ~) and for any 
p ~ M let C~(p) denote the set of all piecewise C ~ closed curves which start 
and end at p. If one chooses a fixed c E Ck(p), then the process of parallel 
transport around c using F can be used to map the tangent space TpM to M 
atp onto itself. This map is a vector space isomorphism determined by c (and 
F) and is denoted byf(c). Using the usual notation ci" c2 for the combination of 
two members c~, c2 E C~(p) and c -J for the inverse of c ~ Ck(p), one has 
f(cl'cz) = f(cl)  Of(c2) andf(c- t)  = (f(c))-l.  The set of all such isomorphisms 
f(c) arising from all members c ~ Ck(p) is thus a subgroup of the group 
GL(TpM) of all isomorphisms of TpM. This subgroup, which turns out to be 
independent of the value of k (1 ----- k -- ~), is called the holonomy group of 
M (with respect to F) at p or the holonomy group of F at p or simply the 
holonomy group of M at p if F is understood (Kobayashi and Nomizu, 1963/ 
1969, Vol. I). Now since M is assumed connected, it follows that M is 
necessarily path connected and then the holonomy groups at any two points 
of M are isomorphic. One thus speaks of the holonomy group of M (or F, 
etc.) and denotes it by alp. If the above operation is repeated, but this time 
only using members of Ck(p) which are homotopic to zero, one similarly 
arrives at the restricted holonomy group of M (or F, etc.), which is denoted 
by alp0 (and if M is simply connected it follows that qb = qb0). It turns out 
that qb is a Lie group and in fact a Lie subgroup of GL(TpM) and that q~0 is 
the connected component of the identity of q~. 

Any nontrivial subspace V of TpM which is mapped onto itself by all 
members of the holonomy group of M at p is called a holonomy invariant 
subspace. If one parallel transports the members of a holonomy invariant 
subspace V to each point of M, one obtains an m-dimensional (holonomy 
invariant in an obvious sense) distribution on M, where m = dim V, which is 
smooth because F is smooth. If F is symmetric, this distribution is necessarily 
integrable and its maximal integrable submanifolds (which are holonomy 
invariant in an obvious sense) are totally geodesic and autoparallel. If such 
a subspace V exists, then F is known as reducible. 

Now return to Cartan's theory and consider the holonomy group of the 
standard Cartan connection F on R 4 considered in the previous section. Using 
the original coordinates described in that section, choose a basis (O/Oxa)p for 
TpM. The holonomy group of F regarded as a group of isomorphisms TpM 

TpM is represented in this basis by a connected Lie subgroup H of the 
Lie group GL(4, R) of all 4 • 4 nonsingular matrices. Now the conditions 
that the vector fields (O/Ox '~) and the covector field (dx ~ are covariantly 
constant mean that they are preserved under parallel transport around any 
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closed curve based at p. From this it follows that H is a connected Lie 
subgroup of the three-dimensional Lie group of matrices of the form 

ii oo Oo 10o, i], a, b, c ~ R (6) 

The subgroup represented by the matrices (6) is in fact Lie isomorphic to 
the (Abelian) Lie group (R 3, +) under the isomorphism which associates the 
matrix in (6) with (a, b, c) e R 3. 

The Lie algebra of the Lie group represented by (6) is the vector space 
of all matrices of the form 

0 0 0 , 
0 0 
0 0 

or, [3, 3' �9 R (7) 

with the binary operation of matrix commutation. Any matrices A and B 
belonging to the set (7) satisfy AB --- 0 and so any such matrix is nilpotent. 
The matrices in (6) can thus be easily obtained from those in (7) by exponentia- 
tion since exp A = I + A. [The Lie algebra (7) can also be derived, somewhat 
indirectly, by using expressions given earlier for Rabcd and F~c to construct 
the infinitesimal holonomy algebra (Kobayashi and Nomizu, 1963/1969, Vol. 
I) and then using the fact that this Lie algebra is a Lie subalgebra of the 
holonomy algebra.] In fact the matrices in (7) are of the form Aab = ~jatb, 
where ~a = (0, ct, [3, "y and ta = (1, 0, 0, 0). In general [that is, when the 
functions F ~' in (1) are not chosen in a special way-- in  a sense easily made 
precise] the holonomy group H is three-dimensional. That is to say, H is the 
Lie group represented by (6) and is noncompact and also exponential (i.e., 
each member is the exponential of some member of its Lie algebra). 

Any member of H is represented here by a matrix A of the form (6) 
and can be written as 

Aab = ~a b q- Xatb 

with X a = (0, a, b, c) and ta as above. All eigenvalues of A equal unity and 
its Jordan form (Segre type) is { (211) }. The three corresponding independent 
eigendirections span the subspace of TpM tangent to the space slice at p and 
it follows that the space slices themselves are holonomy invariant. For each 
such matrix A X a is uniquely determined by A up to a scaling and represents 
the eigendirection of A corresponding to the nonsimple elementary divisor. 
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4. L O C A L  CONSIDERATIONS 

The standard Cartan connection described so far is, by definition, a global 
structure on R 4 and defined in a global chart for R 4. From the mathematical 
viewpoint it might be asked how one could in some sense extend the definition 
to any manifold. However, from the physical viewpoint it would be appro- 
priate to retain the idea of the standard Caftan connection locally. To this 
end the following definitions are suggested. They will be given for a four- 
dimensional manifold, but are clearly easily modified to suit any dimension. 

Let M be a four-dimensional (smooth, connected, Hausdorff, paracom- 
pact) manifold. A smooth symmetric connection F on M is called locally 
(standard) Cartan if for each p e M there exists a coordinate domain 
containing p in which the only nonvanishing coefficients of F are of the 
form F~o. Thus, in M (and with the appropriate interpretations on the coordi- 
nates) one locally reproduces Cartan's geometrization of mechanics. Again 
let F be a smooth symmetric connection on M. Then F will then be called 
a general Cartan connection for M if M admits three pointwise independent 
smooth, covariantly constant global vector fields X, Y, and Z and a smooth, 
global covariantly constant 1-form 1" which annihilates X, Y, and Z [i.e., X('r) 
= Y('r) = Z(~') = 0]. It follows that the smooth type (2, 0) tensor field h 
given by 

h = X |  Y | 1 7 4  

is everywhere rank 3, covariantly constant, and is annihilated by "r (hab-rb = 
0). The two structures are closely related to each other and to the holonomy 
group structure described in the previous section, as the following theorem 
shows. 

Theorem 1. Let M be a four-dimensional (smooth, Hausdorff, connected, 
paracompact) manifold with a smooth symmetric connection F and consider 
the following conditions on F. 

(i) F is a general Cartan connection for M. 
(ii) F is a local Caftan connection for M. 

(iii) If p e M, there exists a basis of TpM with respect to which the 
holonomy group of F is represented by matrices of the form (6) 

It then follows that (i) r (iii), (i) ~ (ii), and if M is simply connected, 
then (i), (ii), and (iii) are equivalent. 

Proof The fact that (i) and (iii) are equivalent follows immediately since 
vectors (respectively covectors) which are invariant under the holonomy give 
rise to global covariantly constant vector (respectively covector) fields on M 
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by parallel translation, and conversely. Now suppose that (i) holds. The vector 
fields X, Y, and Z which are generated by condition (i) satisfy 

[X,Y] = [Y,Z] = [X,Z] = 0  

and thus a coordinate system x a about any point p ~ M can be chosen so that 

0 0 0 
X -  Y -  Z -  

OX 1 OX 2 OX 3 

Also the covariantly constant 1-form "r is necessarily locally a gradient and 
so, by reducing the coordinate domain if necessary, it can be written as "r = 
X.~, where, because of the annihilation conditions, • = •176 In the new 
coordinate system (X, x'~) the vector fields X, Y, and Z retain their above 
components and "r = d x  ~ It follows that equation (1) holds in this new 
coordinate system and so (ii) holds. The final part of the theorem will be 
established if, with the simply connected assumption, it can be shown that 
(ii) ~ (i). This can be done using an argument very similar to that used in 
Hall (1989). 

5. CARTAN CONNECTION ON A REDUCED BUNDLE 

Consider again the standard Cartan connection on M = R 4. Intuitively 
one has given the absolute time function x ~ and the space slices of constant 
x ~ Suppose one introduces 'rigid' Euclidean coordinates x ~ in each slice 
giving a coordinatization x a = (x ~ x ~) of R 4. In this coordinate system the 
connection is imposed by the equation (1) for its coefficients. Any other such 
coordinate system x 'a is related to the one above by x '~  = x ~ x '~ = A ~ x  ~ 

+ f ~ ( x ~  where A is a constant 3 • 3 orthogonal matrix [the constancy 
being enforced by the necessity of preserving the form (1) for the connection 
coefficients in the system x'~]. The geodesic equations in the systems x a and 
x 'a yield equations like (4) and (5) and show that the 'force' is not a well- 
defined quantity on M (Misner e t  a l . ,  1973). Alternatively, one could regard 
this ambiguity as one in the initial choice of inertial frame. If one regards 
the first frame above as inertial, then, if the second is also inertial, f~  = 0 
and the force is then defined by the original choice of inertial frame. However, 
a n y  such frame described above could initially be regarded as inertial. It 
should be noted for later reference that the ambiguity in the force at any 
p ~ M is a memberf~(p) of R 3 and that the vector field on M with components 
(1, O, O, O) everywhere in the system x a (which can be regarded as everywhere 
tangent to the world lines of the 'observer' associated with this coordinate 
system) has components (1, j~(p)) at p ~ M in the system x 'a. 

One can now describe this phenomenon in a more precise way by 
recalling that the holonomy group of the standard Cartan connection F on 



Newton-Cartan Mechanics 1101 

R 4 is, in the general case, the Lie group (R 3, +).  Now F is a linear connection 
on the frame bundle L(M) of M and, according to the holonomy reduction 
theorem (Kobayashi and Nomizu, 1963/1969, Vol. I), it can be reduced to a 
connection on a principal fiber bundle over M with structure group (R 3, +), 
denoted by C(M, 113). This reduction can be visualized as applying to the 
subbundle of frames which at each p E M consists of the values at p of the 
vector fields O/Ox '~ in the original coordinate system above together with any 
of the three-parameter family of vectors at p with components (1, or, 13, 7), 
where a,  13, ~/ E R. A (local or global) choice of  this latter vector T at each 
p E M, which gives a vector field on M with components (1, t~, ~, ~/), with 
~, 13, ~, functions of x ~ only, fixes a 'gauge' and can be interpreted as a 
choice of observer (ioe., a choice of one of  the above coordinate systems up 
to a time-independent translation in each space slice). The connection 
1-forms of the reduced connection (gauge potentials) are R3-valued and 
can be shown to give the components of  the force in a coordinate system 
corresponding to Z A change of gauge (i.e., a change of vector field corres- 
ponding to a choice of  tx, t3, ~/) corresponds to a change of  observer and the 
associated change in the gauge potential corresponds to the "acceleration 
transformations" given by equation (5). The geometrical status of F ~ thus 
becomes clearer after the introduction of the reduced connection since the 
transformation law obeyed by F ~ is in fact the transformation law of an 
appropriate connection under a gauge change. More details regarding the 
construction of the reduced subbundle and associated connection can be found 
in Haddow (1993). 

6. SOME EXTENSIONS OF CARTAN'S METHOD 

6.1. Lagrangian Mechanics 

Suppose that one has an N-particle system with holonomic constraints 
in classical (Lagrangian) mechanics. One can then describe it in a well known 
way as an unconstrained system on configuration space M' .  Here M '  is a 
smooth n-dimensional connected manifold with a global smooth positive- 
definite metric g. The motion of the system in configuration space is then 
given by a smooth path c in M '  which, in local coordinates in M ' ,  satisfies 

d2x ~' { ~x } dx~ dx ' 
dx - - ~  + 13V dx - - 6  dx - -~  + Q~ = 0 (8) 

where Greek indices now run from 1 to n (and Latin indices from 0 to n). 
The Q~ are the generalized force vector components, {~%} are the usual (Levi- 

Civita) Christoffel symbols constructed from the metric g, andx ~ is Newtonian 
absolute time. 
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Construct the connected product manifold M = R X M'  and build a 
smooth symmetric connection F on M in the following way. Let U be any 
chart domain of M'  and define the coefficients of F in the natural coordinate 
system for R X U C M by 

{~ r ~  = ~ . , / ,  r~o = (9) 

with all other connection components zero. It is easy to check that if U' is 
another chart domain of M'  with U'  n u 4= 0 ,  then the corresponding 
coefficients of F in R • U'  are related to those in R • U in the correct 
way. Thus by employing definition (9) over an atlas of such charts of  M, 
one sees that F is a smooth symmetric connection for M. 

One can now evaluate some of the properties of  the connection F on 
M. First, by using the above atlas of chart domains of  M, one can show that 
the local 1-forms defined in each member of  this atlas by 'r = dx ~ give rise 
to a global smooth 1-form "r on M. This 1-form is clearly a global gradient, 
"r = df, where f :  M ~ R is the obvious smooth function whose level surfaces 
are submanifolds of M diffeomorphic to M ' ,  and it annihilates all vector 
fields which are tangent to M' .  It then follows from (9) that "r is covariantly 
constant with respect to the connection F. 

Second, again by using the above atlas of M, the local second-order 
symmetric tensors with components 

g,~ (10) 

in each such coordinate system, where g ~  are the (raised) components of  g 
in the associated coordinate chart for M' ,  give rise to a global smooth type 
(2, 0) tensor h on M which everywhere has rank n. It then follows from (9) 
that h is covariantly constant. 

Third, the holonomy group of F can be calculated from the previous 
results. For any point p E M it is possible to choose a coordinate system 
whose domain contains p and such that h(p) takes its Sylvester canonical 
form eL = diag(0, 1 . . . . .  1). Clearly the holonomy group is then a subgroup 
of the Lie group of matrices 

{A ~ GL(n + 1, R)iAaAr = cx} 

Any member of this group can be written in the form 

Ilv Or] (11) 

where v represents a column vector in R n and P is an n • n orthogonal 
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matrix (i.e., p p r  = I) .  It follows from (11) that the submanifolds M'  in M 
(using an obvious abuse of notation) are holonomy invariant and hence totally 
geodesic and autoparallel and that the symmetric connection naturally induced 
in them by F (Kobayashi and Nomizu, 1963/1969, Vol. II) is the Levi-Civita 
connection arising from g. It is remarked here that the group of all matrices 
(under matrix multiplication) of the form (11) is the semidirect product 
R n • O(n), where f is the homomorphism from the group O(n) to the 
automorphism group of R n which associates P E O(n) with the automor- 
phism v ~ Pv (v ~ Rn). 

Fourth, and again using the coordinate chart (x a, R • U) as above and 
identifying x ~ with Newtonian absolute time t, the controlling equation for 
particle paths (8) is (together with the equation d2x~ 2 = O) the geodesic  

equation in M with respect  to F with h as an affine parameter .  
Finally, one can determine under which conditions F is a metric connec- 

tion, at least in the 'generic' case when M'  with its Levi-Civita connection 
admits no local or global covariantly constant vector fields. Suppose F is 
compatible with a metric q of any signature on M. It follows that M admits 
a global nowhere-zero covariantly constant vector field e with components 

= q"b'rb. This vector field is, by construction, eVerywhere q-orthogonal to 
the submanifolds M' .  Also, it cannot be q-null at any point of M, because 
otherwise it would be q-null everywhere on M and hence everywhere tangent 
to the submanifolds M' .  Then, since the Levi-Civita connection of g in each 
M'  is induced by F, the vector field ~ would give rise to a vector field 
in each M'  which is covariantly constant with respect to this Levi-Civita 
connection, contradicting the generic condition on its holonomy group. Even 
if the generic condition on the holonomy group of the connection on M'  is 
dropped, then information is still available (Haddow, 1993). It follows that 

is nowhere g-null on M. Hence M is locally decomposable and admits local 
coordinates x'" about any point adapted to the decomposition in which ~ and 
-r are given by ~ = +O/Ox '~ and "r = dx '~ (depending on the signature of q). 
Since "r = dx ~ in the original (natural) coordinate system, the transformation 
between the original coordinates x a and the new coordinates x 'a satisfies x '~ 
= x ~ (after setting an arbitrary constant to zero). In the original coordinates, 

then has components ~ satisfying $0 = _+ 1 and since ~ is covariantly 
constant with respect to F and F~'t~ = 0, one has 

~t~ + { ; , y } ~  = 0 (12) 

where {~,} are associated with g. This implies that either ~ --= 0 or the 

original manifold M'  admits a nowhere-zero local covariantly constant vector 
field. The latter is ruled out by the generic condition on the Levi-Civita 
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connection on M'  and so ff = +_OlOx ~ [and so these two coordinate systems 
are linked by x '~ = x ~ x '~ = x'~(x~)]. The covariant constancy of ff together 
with the above values for its components in the original coordinate system 
now give F~0 (=  Q~) = 0 and in this sense the original physical system was 
'trivial.' Conversely, if Fgo -- 0 holds in addition to (9) in the original 
coordinate system, then the local vector field ~, defined in each such coordi- 
nate system by q- = +-O/Ox ~ is covariantly constant and the tensor components 
hab +___ ~a~b in each of these coordinate systems then give rise to a global 
metric on M which is compatible with F. Thus F is a metric connection i f  
and only i f  the original physical system was trivial in the above sense. 

If  F is a metric connection on M, then the fact that the vector field ~- is 
covariantly constant means that ~(p) is preserved under the holonomy group 
of 1-" at p and the holonomy matrices in the natural coordinate systems take 
the form ( l l )  with v -- 0. The holonomy group is then Lie isomorphic to a 
Lie subgroup of  some (pseudo-) orthogonal group on R n+l, as it should be. 
In this case the connection F is not necessarily flat (as in the standard Cartan 
case), because of the curvature 'residing' in the connection on M' .  

6.2. Electromagnetic Theory 

Consider a particle P with electric charge e moving in an electromagnetic 
field represented by the electric and magnetic 3-vectors E and B. Then, to 
the usual approximation, the force on P when it has velocity v in some 
inertial frame is given by the Lorentz force law as F = e(E + v • B). With 
units chosen so that the charge to mass ratio of P is unity, the Newtonian 
equations of  motion for P in the usual Cartesian coordinates can be written as 

dax ,, dxf~ 
_ _  _ E , ~  = dxO2 - B"~ ~-6  0 (13) 

Newtonian absolute time is denoted by x ~ B is the skew matrix 

[ ~ - - B  2 

B ~  = -B3 0 l 
B2 - B I  

(14) 

and the convention for Greek and Latin indices is as in Section 2. Now regard 
the space and absolute time coordinates here as coordinates on R 4 (=  M) 
with E and B regarded as smooth functions of x ~ and x ~ and introduce into 
R 4 a smooth symmetric connection F whose only nonvanishing coefficients 
in this coordinate system are given by 
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= - e  ~,, = F~, = - ~  B ~ (15) 

Then by arguments similar to those given in Section 2 it follows that each 
space slice is a totally geodesic and autoparallel submanifold of  M and that 
one can introduce a 1-form t = dx ~ and a tensor h with components h ab = 
diag(0, 1, 1, 1) which are easily shown to be covariantly constant with respect 
to F. Also t annihilates h. Next, any affinely parametrized geodesic xa(h) in 
M which is not tangent to a space slice at its initial point (and hence is never 
tangent to a space slice) has equations 

_ 

d2x ~ o 2 dxf~ dx~ O, - 0 
dh ----T - E~ - Ba6 d)~ dh dh 2 

(16) 

which is jus t  the dynamical  equation (13) above. 
The holonomy group of F can be calculated at p in M using the basis 

(O/Oxa)p and is easily found to consist of matrices of the form 

[i o I (17) 

where a, b, c ~ R and P e SO(3). The complete set of matrices (17) 
constitutes the semi-direct product R 3 X f S O ( 3 ) ,  wheref i s  the homomorphism 
associating P E SO(3) with the R 3 automorphism v ~ Pv. 

Since each space slice is an autoparallel submanifold of  M, the symmetric 
connection F on M defined above naturally induces a symmetric connection 
in each space slice. Further, if V denotes covariant differentiation with respect 
to F and V' denotes covariant differentiation with respect to the induced 
connection in a particular space slice, then for vector fields A and B which 
are everywhere tangent to the space slice (and hence induce vector fields A'  
and B' in the space slice in a natural way) VAB is tangent to the space slice 
and induces the vector field V~,B' in it. Now it immediately follows from 
equation (15) defining F that VxiX j : 0 ,  where Xk = O/Ox k and k = 1, 2, 3. 

t l  t Hence VxiXj = 0 and as a consequence the connection V'  on the space slice 
is f la t  (and, in fact, is the Levi-Civita connection for the metric on the space 
slice naturally induced by h). However, the connection F on M may, but does 
not necessarily, admit any (local or global) covariantly constant vector fields. 
In fact the condition that a vector field W on M is covariantly constant is, 
in the above coordinate system on M, equivalent to the conditions 
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1 
W~,~ - ~ B ~ W  ~ = 0 

1 
W~,0 - E " W  ~ - ~ B ~ W  ~ = 0 

W~ = 0 

(18) 

(19) 

(20) 

Now (20) is equivalent to W ~ being constant and so after a constant scaling 
of W one need only consider the cases W ~ = 0 and W ~ = 1. A consideration 
of the (source-free) electromagnetic field represented by the plane wave 
whose only nonvanishing electric and magnetic field components are 

B3 = B0 sin(kx t - fox~ E2 = cBo sin(kx 1 - tax ~ (21) 

where B0, c, to, and k are nonzero constants, shows that the associated 
connection F on M admits just a single independent covariantly constant 
vector field W (and that this comes from the case W ~ = 0) given by W 
= O/Ox 3. However, if one linearly superimposes upon the field (21) the 
electromagnetic field whose only nonvanishing components are 

Bl = B0 sin(kx 2 - fox~ E3 = cBo sin(kx 2 - ~ox ~ (22) 

then the connection associated with this combined field can be seen, using 
equations (18)-(20), to admit no (local or global) covariantly constant vec- 
tor fields. 

The final remark of the previous paragraph shows that the connection 
F is not necessarily fiat. It is also not necessarily a metric connection. In 
fact F is metric i f  and only i f  it is fiat. To see this, one notes as in the case 
of the standard Cartan connection, since M = R 4 is simply connected, that 
if F is flat, then it is metric. Conversely, suppose that F is a metric connection 
with compatible metric g of arbitrary signature and corresponding curvature 
tensor Rabcd . The above argument regarding the inducing of F onto the space 
slices, together with the Ricci identity, shows that, at any point p e M, 
RabcdAbBcCd = 0 whenever A, B, and C are vector fields on M tangent to the 
space slice at p. Thus for any such tangent vectors B and C at p the tensor 
Fab = RabcdBCC d atp, which is skew-self-adjoint with respect to g (i.e., geaFeb 
+ gbeFea = 0), satisfies F%A b = 0 for all A �9 TpM tangent to the space 
slice at p and hence has rank less than or equal to one. Since such a skew- 
self-adjoint tensor must have even rank, it follows that all such tensors F% 
are zero at all points of M. As a consequence the Riemann tensor components 
Rabcd (=  gaeReb~d) are, at each p �9 M, sums of terms of the form QbHcd, 
where G and H are drawn from a set of three linearly independent skew 

§ ~(i) (i ~--- 1, 2, 3)  (square brackets denote the usual skew-symmetriza- tensors *[at-'b] 
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tion), where each p~i) is not parallel to ta. Now the fact that h is covariantly 
constant together with the Ricci identity gives 

hbeRaec d + h~eRbec ~ = 0 (23) 

Since the above tensors ttap~ ~ are linearly independent, no linear combination 
of the p~i) can be proportional to ta and hence no such linear combination 
can annihilate h (since t is unique up to scaling with respect to this last 
property). It finally follows by substituting this information into (23) that the 
Riemann tensor is zero at each p ~ M and so F is flat. 

7. DEGENERATE METRIC CONNECTIONS 

The generalizations of Cartan's idea above have led naturally to a study 
of a smooth n-dimensional manifold M admitting a smooth symmetric connec- 
tion F and a smooth second-order symmetric type (2, 0) tensor h which is 
covariantly constant with respect to F and of rank n - 1 everywhere. This 
section will explore some of the existence and uniqueness problems associated 
with structures like h and F and extends work in Hall and Haddow (1994), 
but first some definitions are required. Throughout this section M will be a 
connected, paracompact, n-dimensional, smooth Hausdorff manifold and all 
structures discussed will be assumed smooth. If  M admits a global smooth 
symmetric type (2, 0) tensor h of rank n - 1 at each p ~ M (henceforth 
called a degenerate metric for M), then two natural distributions arise on M. 
The first is the kernel distribution K* of h, which associates each point p 
M with the unique one-dimensional subspace of  the cotangent space T * M  
to M at p which annihilates h. The second is the h-distribution K, which 
associates with each p ~ M the unique (n - 1)-dimensional subspace of 
TpM which is annihilated by each member of K* at p. Thus 

K*(p) = {o~ e T*Ml(h(p))(o~) = 0} 

g(p )  = {v ~ TpMlo~(v) = 0 Vw ~ g*(p)}  

for each p e M. Here h(p) is regarded as a linear map T * M  ~ TpM in the 
usual way. It follows from the smoothness of h that these two distributions 
are smooth in the sense that K* can be locally spanned by a (local) smooth 
1-form and K by (n - 1) (local) smooth vector fields (see, e.g., Hall and 
Rendall, 1989). 

Since M is paracompact, it necessarily admits a linear connection and 
if M admits a degenerate metric h and a connection F with respect to which 
h is covariantly constant, then F will be said to f i t  h and will be called a 
degenerate metric connection. Under these circumstances the distributions 
K* and K are easily seen to be invariant under the holonomy group of F. 
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Given such a tensor field h on M, the distributions K* and K are called 
integrable if, in the first case, K* can be locally spanned by a local exact 
(i.e., gradient) I-form and, in the second case, K can be locally spanned by 
a (local) involutive system of (n - 1) smooth vector fields. It follows from 
a standard result (Spivak, 1970) that K* is integrable if and only if K is. It 
is, however, possible that neither is integrable. To see this, consider the three 
vector fields on R 4 given by (Brickell and Clark, 1970) 

X 0 y 0 Z 0 + eX O (24) 
Ox Oy Oz Ot 

where (x, y, z, t) is the standard global chart for R 4. This system is not 
involutive (since [X, Z] = eX(a/at) does not lie in the associated distribution), 
but is, nevertheless, the h-distribution of the degenerate metric given by 

h = X |  Y | 1 7 4  

But if h is a degenerate metric and F is a symmetric connection for M and 
if F fits h, then the distributions K* and K are invariant under the holonomy 
group arising from F and are hence integrable (Kobayashi and Nomizu, 1963/ 
1969, Vol. I). However, it should be stressed here that integrability of the 
distributions is a consequence of the fact that F is symmetric and may fail 
if F is not symmetric. An example of this behavior will be given later. 

Suppose now that M admits a degenerate metric h. Under what conditions 
does M admit a connection or a symmetric connection which fits h and what 
can be said about the uniqueness of such connections? The question contains 
the analog of the Levi-Civita problem for (nondegenerate) metrics on M. 
Clearly from the remarks in the previous paragraph, the associated kernel 
and h-distributions must be integrable in order for a symmetric connection 
to exist and fit h. This turns out to be the only restriction required, as the 
next theorem shows. 

Theorem 2. Let M be a connected, paracompact, smooth, Hausdorff, n- 
dimensional manifold which admits a degenerate metric h. It then follows that: 

(i) M admits a smooth connection which fits h. 
(ii) M admits a smooth symmetric connection which fits h if and only 

if the kernel distribution K* of h (equivalently the h-distribution 
K) is integrable. 

(iii) The connection (or symmetric connection if one exists) which fits 
h is not unique. 

Proof. Since M is paracompact, it admits a smooth, global, positive- 
definite metric ~ (see, e.g., Kobayashi and Nomizu, 1963/1969, Vol. I). Also, 
if p e M, there exists an open neighborhood U of p and a smooth (nowhere 
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zero) 1-form p on U which spans K* at each point of U. Regarding ~/in the 
usual way as an isomorphism TqM ,--, T * M  at each q E M, one then has a 
local smooth, nowhere-zero vector field T(p) = y- l (p(p) )  on U and T may 
(and will) be regarded as a 3,-unit vector field on U by rescaling if necessary. 
By repeating this construction over an open cover of  such neighborhoods U 
one sees that at any p E M the corresponding vectors T arising at p e M 
agree up to a sign. Hence a global type (2, 0) smooth symmetric tensor field 
H is defined on M which is given unambiguously in any such neighborhood 
U by T | T. Now let y '  = h + H. The matrix ~ ' (p)  is nonsingular for any 
p ~ M because the equation (h ab + TaTb)O~b = 0 at p is easily shown, after 
a contraction with Pa, to yield the contradiction Tapa = 0 at p. The tensor 
7'  is thus seen to be a global smooth (contravariant) metric for M and hence 
has a corresponding (symmetric) Levi-Civita connection F' .  Now define in 
any of the above coordinate domains the functions F~c (Walker, 1955) 

F~,c = F ~  + Ta(Tb~c + Tc~aTaTb) (25) 

where a vertical stroke denotes covariant differentiation with respect to F'  
and T~ = Y'b T b. Then by the above construction these functions are the local 
coefficients of a (not necessarily symmetric) connection F on M. Again in 
this coordinate domain, and using a semicolon to denote differentiation with 
respect to F, one finds after a short calculation that 

hab;c = habl,. + hadpbdc -k- hdbpadc = 0 (26) 

The tensor Pab,. is defined by Pabc = F~,c - F/~ and the facts that y'ab~c = 0 
and T~ c~ Pa ( ~  habTb = O) and y'abT b = T a [ ~  (T~Ta)lb = 0 ~ TalbT a = 
0] have been used. This completes the proof of part (i). For part (ii) it has 
already been established that if such a symmetric connection exists, then 
integrability follows. Now suppose that K* is integrable. Then in each of 
the above coordinate domains T~ (ccp~) satisfies the well-known restriction 
Tia ~b T~] = 0 which follows since the (Levi-Civita) connection F '  is symmetric. 
When this relation is written out and contracted with T b (and use is made 
of the above result Ta~bT a = 0) one finds 

T[cTa]lbT b -Jr- T[cla ] = 0 (27) 

It then follows from (27) that Ft%cl = 0 and so F is symmetric. To establish 
(iii), choose (as one always can under the conditions of the theorem) a 
global smooth (not identically zero) vector field k on M. In the above charts 
the coefficients 

F~,~. = F~c +/ (TbTc 

give rise to a well-defined smooth connection F on M. This connection is 
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distinct from F, fits h, and is symmetric if and only if F is symmetric. This 
completes the proof. 

It is remarked that by utilizing a degenerate metric such as, for example, 
was constructed from the vector fields in (24), one can use (i) above to 
construct (nonsymmetric) connections whose holonomy groups are reducible 
but where holonomy invariant subspaces at each p e M do not give rise to 
integrable submanifolds. Also (iii) should be compared and contrasted with 
the guaranteed uniqueness of the (symmetric) Levi-Civita connection of a 
(nondegenerate) metric on M. 

If h is a degenerate metric for M and F a connection on M which fits 
h, then, as remarked earlier, the kernel distribution K* is holonomy invariant. 
It follows that the local l-forms p spanning K* are recurrent; Pa,b = Paqb, 
where a semicolon denotes covariant differentiation with respect to F and q 
is another smooth local 1-form [a further study of the recurrence 1-form q 
can be found in Haddow (1993) and Hall (1991)]. It may not be possible to 
locally scale these local recurrent 1-forms in order that they are covariantly 
constant. This would be the case if and only if each such q was locally exact 
[if qa = ~,a for some local function t~, then (e-r = 0]. For example, the 
standard Cartan connection in Section 2 admits a global covariantly constant 
1-form dx ~ which spans the kernel of h. But if one modifies this connection 
by introducing one extra nonzero connection coefficient F~ which is not just 
a function of x ~ then one still has the degenerate metric h, but the kernel 
distribution cannot now be spanned by a local covariantly constant 1-form 
in some neighborhood of each p e M. 

These features are closely related to certain properties of the holonomy 
group of the degenerate metric connection F, special cases of which have 
already been mentioned in earlier examples. Let M, F, and h be as above 
and note that since h is covariantly constant it has the same representative 
(ordered) Sylvester matrix at each p e M, say 

[3 = diag(O, 1 . . . . .  1, - 1  . . . . .  - 1 )  

with r positive and s negative entries (r + s + 1 = n). It is then clear that 
the holonomy group of F is isomorphic to a Lie subgroup of the Lie group 
DM(r, s) [degenerate metric group of signature (r, s)] defined by 

n i ( r ,  s) = {A e GL(n, R)[A[3A r =  [3} (28) 

By explicitly writing out the defining condition in a Sylvester basis of TpM 
at some p E M it follows that any A e DM(r, s) can be written as 

A = [  d Opt I (29) 

In (29), d e R (d 4~ 0), v �9 R n-l, and the (n - 1) X (n - 1) matrix P �9 
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O(r, s). In the corresponding dual basis at p the 1-form p with components 
(1, 0 . . . . .  0) spans K* and, under parallel transport around a closed curve 
at p whose associated transformation of TpM is represented by the holonomy 
matrix (29), is scaled by the factor d. One thus obtains the following result, 

Theorem 3. Let M be a connected, paracompact, smooth, Hausdorff, n- 
dimensional manifold which admits a degenerate metric h of signature (r, s) 
and connection F which fits h. The holonomy group is then isomorphic to 
some subgroup of DM(r, s) and K* is locally spanned by a recurrent 1-form. 
Further, and using the above conventions, d = 1 for all members of the 
holonomy group if and only if K* can be spanned by a global covariantly 
constant 1-form. 

In the last part of the above theorem (i.e., when d = 1) the holonomy 
group is thus a subgroup of  the group of all matrices of the form (29) with 
d = 1. The latter group is the semi-direct product R n- ~ Xf  O(F~ S), where f 
is the homomorphism from the group O(r, s) to the automorphism group of 
R n-I which associates P E O(r, s) with the automorphism v ~ Pv (v 
Rn-1). This semi-direct product is the pseudo-Euclidean group of signature 
(r, s). 

As a final remark, another example of a degenerate metric connection 
can be described. Let M be an n-dimensional smooth manifold with smooth 
Lorentz metric g. Let N be a null submanifold of M so that at each p ~ N 
there is a unique g-null direction in TpM tangent to N. Then g induces a 
(covariant) degenerate metric h in N in the usual way (i.e., if i: N ~ M is 
the natural inclusion, then h : i 'g). Further, if N is autoparallel with respect 
to the Levi-Civita connection in M arising from g [as, for example, occurs 
in the study of space-times in general relativity which possess a recurrent 
null vector field (Hall, 1991)], then this latter connection induces a natural 
connection in N which fits h. 
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